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The use of a TEMg *-mode laser beam has been proposed as a means of focusing an atomic heam to nanometer-
scale spot diameters. We have analyzed the classical trajectories of atoms through a TEMy*-mode laser beam,
using methods developed for particle optics. The differential equation that describes the properties of the first-
order paraxial lens has exactly the same form as the bell-shaped magnetic Newtonian lens that was first ana-
lyzed by Glaser for the focusing of electrons in an electron-microscope objective, We calculate the first-order
properties of the lens, obtaining cardinal elements that are valid over the entire operating range of the lens, in-
cluding the thick and the immersion regimes. Contributions to the spot size are discussed, including four aberra-

- tions plus diffraction and atomic-beam-collimation effects. Explicit expressions for spherical, chromatic,
spontaneous-emission, and dipole-fluctuation aberrations are obtained. Examples are discussed for a sodium
atomic beam, showing that subnanometer-diameter spots may be achieved with reasonable laser and atomic-
beam parameters. Optimization of the lens is also discussed.

1. INTRODUCTION

The influence of near-resonant laser light on the motion
of atoms in free space has generated a significant amount
of interest over the past few years. In particular it has
been suggested and in some ways demonstrated'™® that an
atomic beam can be focused by using the forces exerted on
the atoms by the laser light. The ability to focus atomic
beams suggests a number of interesting applications, in-
cluding atomic microscopy, microfabrication, and precise
control of atomic beams for precision measurements.
Two major considerations in the practical applicability of
lagser-controlled atomic focusing are the ease with which
the focusing process can be modeled and the ultimate reso-
lution attainable. In this paper we show that for coaxial
focusing in a TEMy* laser beam the first-order (paraxial)
focal properties can be exactly modeled analytically. We
also discuss all the major aberrations in order to show that
diffraction-limited spots of the order of 1 nm can in prin-
ciple be obtained.

An atom in the radiation field of a near-resonant laser
experiences two types of force.” The spontaneous-
emission force results from the ahsorption and the random
spontaneous emission of photons. This random process is
limited by the rate at which spontaneous emission occurs,
and it saturates as the laser intensity increases. The sec-
ond type of force, the dipole force, is a result of the inter-
action of the induced atomic dipole with a gradient in
laser-beam intensity. This interaction can be made large
by increasing the intensity gradient within the laser beam
and by increasing the detuning of the laser frequency
from the natural resonance frequency of the atom. In the
case of positive detuning, when the laser frequency is
greater than the atomic resonance frequency, the force
on the atoms is directed from the region of higher laser
intensity toward lower laser intensity. The opposite
is true for negative detuning; i.e., the force is directed
toward higher intensity.

In 1978 Bjorkholm et al.! demonstrated that an atomic
beam that is propagating coaxially with a Gaussian
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(TEM,,) laser beam can be focused to ~250 um by means
of the dipole force. Negative detuning was used, so that
the atoms were attracted to the higher laser intensity in
the center of the beam. In a subsequent paper? Bjorkholm
et al. showed that a spot size of 28 um could be obtained,
and they examined the limitations on the ultimate spot
gize that are imposed by spontaneous-emission processes.
In 1988 Balykin et al.® reported experiments with a lens
made up of two counterpropagating, diverging, Gaussian
laser beams that were oriented transversely to the atomic
beam. They were able to obtain the image of two atomic
sources, demonstrating real image formation with a laser
atomic lens, While these experiments represent impor-
tant pioneering work, both methods of focusing atoms
suffer from the same problem if one is concerned with the
ultimate resolution. In each case the atoms travel
through regions of high laser intensity, where a significant
amount of spontaneous emission occurs. This emission
acts to increase the amount of random motion in the
atomic beam, which effectively decreases the resolution.

Balykin and Letokhov® first analyzed the properties of
a laser atomic lens that consists of an atomic beam travel-
ing coaxially through the focus of a TEMy* laser beam
(see Fig. 1). Positive detuning is used, so the force is di-
rected toward the hollow center of the laser beam. This
type of lens has the advantage that the atoms go through a
relatively low-intensity region, so spontaneous emission is
kept to a minimum. Balykin and Letokhov treated the
lens according to the thin-lens approximation and ana-
lyzed the focal length, the spherical aberration, the chro-
matic aberration, and the effects of spontaneous emission
on the spot size. Their approach was a wave-optical one,
in which the atomic propagation was treated by consider-
ing the phase change of a de Broglie wave front as it passes
through the lens. -Diffraction of the atoms was thus in-
cluded inherently in their approach. They found that, for
reasonable laser and atomic-beam parameters, spot sizes
of a fraction of a nanometer could be obtained.

Recently Gallatin and Gould® (GG) extended the wave-
optical approach of Balykin and Letokhov to treat the lens
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Fig. 1. Laser focusing of atoms in a TEMy* laser beam. Cross-
sectional view of the focus of the laser beam, with laser intensity
represented by a gray scale. The atomic beam propagates coaxi-
ally with the laser beam, being focused by the gradient in the
laser intensity.

correctly as a thick lens. They used a path integral for-
malism to solve Schrodinger’s equation for the propaga-
tion of a Gaussian atomie¢ beam in the TEMg* laser field,
obtaining focal spot sizes and positions of optimum focus
for a number of realistic cases. They also estimated, in
the thin-lens limit, the effects of spherical aberration,
chromatic aberration, spontaneous emission, and dipole
fluctuations, They found that, unlike for the result of
Balykin and Letokhov, spherical aberration does not van-
ish for a particular set of laser-beam parameters. Fur-
ther, they found the largest contributions to the spot size
to be diffraction, spherical aberration, and dipole fluctua-
tions. Spot sizes of several nanometers were calculated
for the cases they examined.

Our approach to the analysis of the TEM, * laser atomic
lens is to treat the atoms asg classical particles that are
moving in the potential generated by the dipole force. We
use methods that were originally developed for charged-
particle optics for caleulating the trajectories of particles
in cylindrically symmetric potential fields. Applied to
the TEM;* laser atomic lens, these methods result in a
simple understanding of the first-order focal properties.
In fact the first-order paraxial equation is of exactly the
same form as the equation solved by Glaser” for electron
trajectories in a bell-shaped magnetic electron-microscope
lens field. A simple solution exists, which treats the
thickness of the lens exactly and predicts focal lengths
and principal plane locations for both the imumersion case
(when the image or object is within the field of the lens)
and the asymptotic case. The immersion case is particu-
larly interesting for the TEM,* laser atomic lens, because
this is where the shortest focal lengths and hence the
smallest aberrations occur. As is disecussed in Section 2,
we find that the lens has a minimum focal length (MFL),
which is reached when the focal spot is at the center of the
lens and the focal length is equal to the Rayleigh length of
the laser beam. This has important design consequences
in that infinitely short focal lengths cannot be achieved,
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In addition, the optimum configuration for obtaining the
minimum spot size (in the zero-magnification case) is a
symmetric arrangement with the focus at the center of
the lens.

With analytic expressions for the first-order properties
of the lens accurate expressions for contributions to the
spot size can be obtained. Aberrations can be treated ex-
actly without resorting to a thin-lens approximation. We
obtain analytic expressions for spherical and chromatic
aberration as well as compact expresgions for the aberra-
tions arising from both spontaneous emission and dipole-
force fluctuations. Diffraction of the atoms is treated as
it would be in the case of geometric opties; i.e., Fraunhofar
diffraction of the atom beam is assumed, based on the
de Broglie wavelength of the atoms and the angle of con-
vergence of the beam at the focal spot. This assumption
is valid provided that the potential does not change rapidly
over the scale of an atomic wavelength, which is essen-
tially the requirement for the WKB approximation. The
effect on the spot diameter of a finite source size or,
equivalently, an imperfectly collinated atomic beam is
also simply obtained when the focal length and principal
plane location are known,

In Section 2 we discuss the solution of the first-order
paraxial equation of motion for the atoms in the TEMy*
laser field and discuss the resulting description of the lens
in terms of cardinal elements. Section 3 covers spot size
contributions. In Section 4 we discuss numerical exam-
ples, comparing our results with those of GG and examin-
ing the case of optimum focusing with the shortest focal
length. Optimization of the lens is covered in Section 5,
where a practical formula for the net spot size is derived
and minimized.

2. FIRST-ORDER LENS PROPERTIES

A. Paraxial Equation of Motion

In this section we derive the first-order equation of mo-
tion that governs the focusing of a cylindrically symmetric
atomic beam in the TEMg* laser field. The optic axis,
the axis of symmetry, is the z axis, with 2z = 0 located at
the center of the laser focus (minimum beam waist). The
equation of motion can be derived from the Lagrangian,
L = (% + 3* + 2%/2m - U(r, 2), in the standard way.®
Here % denotes the atomic velocity along the x axis, m is
the atomic mass, and U(r, 2} is the potential energy. In
cylindrical coordinates, assuming that the initial angular
momentum about the z axis is zero, the radial equation of
motion simplifies to

P laU(r,Z) =

o 0. (B

The conservation of energy is used to parameterize this
equation in terms of the distance along the optic axis 2.
With this parameterization the all-orders equation of mo-
tion becomes

i —_ M Ve r2y—1/2. l]
dz[(l E ) 1+ ry

1 Ulr,2)
T
2E, E,
Here E, is the incident atomic-beam kinetic energy and r'
denotes the differentiation of r with respect to z.

~1/2
] a+ r"“)"”%’—a =0. (2
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In order to solve Eq. {2), we need the potential energy
U(r, 2) of the atom in the laser field. The potential en-
ergy is given by?

U2 = 2 hnlt + o021, @

where A = w — wg is the laser detuning from the atomic
resonant frequency. Here w and wg are the laser and
atomic resonance angular frequencies, and p(r, 2), the
atomic transition saturation parameter, is given by

Krﬂ v
I, %+ 44%

plrz) = (4)
In the expression for p(r, z), v is the natural atomic reso-
nance linewidth (in radians per second), I, is the atomic
saturation transition intensity, and I(r,z) is the laser
intensity distribution for the TEMy* mode, given by

Wy I‘ 2L2 ?“2 ) .

I(!', 2) = 4( )exp( I'.ng L_2+_zz

(8

The parameter wy determines the radius of the laser beam
at the waist; the peak intensity is found at a distance
wo/2"* from the axis, The quantity L is the Rayleigh
length, given by L = mwo®/A; A is the laser wavelength;
w¥(z) = wo(l + 2*/L%); and I, is the lager intensity at the
beam waist, which is related to the laser power P; by
Ig = Po/2’ﬂ'ui'02.

The first-order solution of Eq. (2) involves making the
assumptions that U(r,2) << E; and r' << 1. The equa-
tion then simplifies to

1 8U(r,2)

r +-2—E—O'T=0. (6}

We then expand the potential in r around the z axis. This
expansion involves both the exponential in the expression
for the laser-beam intensity and the logarithm in the ex-
pression for the potential. In order for this to be a valid
expansion we require that r? << w¢® and p(r,z) << 1.
When we take into account the first of these require-
ments, the second becomes py = O(1), where p, is the
space-independent part of p(r, z):

8 ')'2 Io
¥? + 4A% I

Po= (M
Expanding the potential, we find that the lowest-order
term is quadratic in r:

Apﬂwﬂ P2
2uwhz) |

We note, as was pointed out by Balykin and Letokhov?
that this quadratic dependence on r provides the neces-
sary radial dependence of the potential for a Newtonian
lens description, Inserting Eq. (8) into Eq. (6) results in
the first-order paraxial equation of motion:

Us(r,2) = 8

hA wo

2E, w“(z) ®)

4+ po—

At this point we introduce the excitation parameters k
and ¢ and rewrite the equation of motion in a dimension-
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less form. The excitation parameters are

hA L2
2.
k= Pqu g (10)
g = k¥ + 1. (11)

The dimensionless variables are R = r/L and Z = z/L.
With these substitutions the first-order equation of motion,
Eq. (9), can be written in the simple dimensionless form
k2
R+ "R =10.

(1 + Z%* (12)
This differential equation can be cast in a form for which
there is an analytic solution (first developed by Glaser”) by
making the substitution Z = —cot ¢. We note that ¢ = 0
at 2 = —o and ¢ = wat z = +w (see Fig. 2). With this
substitution the equation of motion becomes

R+ 2cotpR' + F°'R =0 (13)

(primes now indicate differentiation with respect to ¢). A
further substitution of R{(¢) = y(¢)/sin ¢ results in the
simple differential equation

¥y + g% =0. (14)

The general solution to Eq, (14) is a linear combination of
sin g¢ and cos g¢, which can be converted into a general
expresgion for the dimensionless trajectory:

R($) = (1/sin ¢) (¢, sin q¢p + ez cos gy, (15)

where ¢, and ¢ are constants chosen to specify the trajec-
tory of interest. For example, a ray moving in the posi-
tive z direction that is initially paralle] to the z axis at a
distance r, is described by the trajectory

ro sin q¢

Rig) = L g sin cfa

(18)
This trajectory is particularly useful in determining the
cardinal elements of the lens; an example is shown in
Fig. 2.
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Fig. 2. Sample trajectory, described by Eq. (16}, of an atom ini-
tially traveling paraliel to the z axis at a radius of 0.1 um, The
locations of the focal point and the principal plane are shown
along with the definitions of the angle ¢ and the focal length £
For this trajectory ¢ = 1.42.
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Fig. 3. Focal length f and principal plane location z, as a func-
tion of g. Note that the focal length has a minimum at ¢ = 2,
where 2, = —f.

B. Cardinal Elements

Since the first-order paraxial equation for the TEM,,*
laser atomic lens is identical to the equation treated by
Glaser in his bell-shaped magnetic lens field model, we
can extract all the first-order properties of the lens from
his work. The lens has the following important charac-
teristics: (a) It is & thick lens, and hence its cardinal ele-
ments include both principal planes and focal lengths
instead of only a single focal length. (b) It is a symmetric
lens, so the principal planes and the focal spots for the
image side and object side are located at equal distances
from the lens center. (c) For sufficiently large excitation,
the lens can have multiple crossovers, (d) For all image
and object plane locations, even in the immersion case, the
Iens is still Newtonian in the sense that the simple Newto-
nian lens law applies for determining magnification,
image locations, ete. in terms of the cardinal elements of
the lens.

We determine the image-side focal point of the lens by
considering the initiaily parallel trajectory described by
Eq. (18). A focal point exists for the values of ¢ (0 <
¢ < ) that result in R(¢$) = 0. This occurs when ¢ =
nmfg, where n is an integer between 1 and the largest
integer less than ¢ Thus the image-side focal points are
given by

z; = L cot(nm/g). (17)

We see that for 1 = ¢ < 2 the lens has a single focal point
that ranges in location from z = +o toz = 0. The prin-
cipal plane locations and focal lengths are determined
from the trajectory of Eq. (16}, as shown in Fig. 2. Using
Eq, (16}, we obtain the image-side principal plane locations,

2, = —L cot(nm/2q) (n odd},
zp, = L tan(nm/2q) (n even), (18)
and the focal lengths,
n+ L .
f=0D lsin(n'rr/q) (19)

The linear and angular magnifications, M and m, are
given by
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= (1) sin qbo,

Lo o
m sin ¢;

(20

where ¢, and ¢, are the values of ¢ that correspond to the
object and image positions, respectively. We note that,
though it is not required for treatment in terms of cardi-
nal elements, the lens behavior is simplest when the num-
ber of focal points is kept to one. Hence Eqs. (17)-(20)
are generally used with n = 1,
- Figure 3 shows the behavior of the focal length fand the
principal plane location 2z, as a function of lens excitation
g. Several interesting features of the lens become appar-
ent on examination of these curves. For example, all the
first-order properties of the leng are determined by a sin-
gle parameter g, which is given by Egs. (10)-(11). This
fact makes characterization of the lens simple and shows
that, at least to first order, there are many combinations
of incident atomic velocity, laser power, detuning, and
laser-beam waist w, that result in identical lens behaviors.
Furthermore, as is shown in Fig, 8, the focal length goes
through a minimum, which is reached when ¢ = 2. Thus
the focusing of the lens does not become infinitely strong
as the excitation is increased, as might have been ex-
pected. Instead, for ¢ > 2, as a function of excitation the
principal plane moves in the negative 2 direction faster
than does the focal point, resulting in a longer focal
length. The shortest focal length oceurs when f = L and
2, = —L; ie., the focal point is at the center of the lens.
This is sometimes referred to as the telescopic mode of
focusing, because the trajectory enters and leaves the lens
parallel to the z axis. The minimum focal length condi-
tion has important implications when the optimization of
the lens is considered, as this is generally a configuration
in which diffraction and some aberrations are minimized.

3. SPOT SIZE LIMITATIONS

The determination of the spot size for an initially {nearly)
parallel atomic beam that is brought to a focus at the focal
point of the lens is of central importance in the analysis of
the TEM,,* laser atomic lens. We consider the contribu-
tions of aberrations as well as the effects of diffraction
and a finite source size {i.e., an imperfectly collimated
atomic beam), The aberrations include spherical aberra-
tion, chromatic aberration, and two diffusive aberrations,
one resulting from spontaneous emission and the other
from dipole-force fluctuations. In each case the ultimate
result is an expression for the FWHM spot diameter of
the beam at the focus in terms of lager- and atomic-beam
parameters. To obtain the net spot size, we add all con-
tributions in quadrature.

A. Aberrations

Because of the simple analytic nature of the paraxial solu-
tions to the ray equation, it is possible to do a fairly rigor-
ous treatment of the aberrations. Though the immediate
interest is in the spot size at the focus for an initially
parallel beam, we obtain expressions for the aberrations in
the general case of finite object and | -, distances.
These will prove useful in cases in which the lens is used
for imaging. We then consider the limiting case of zero
magnification (i.e., the object at —oo, the image at the
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Fig. 4. Trajectory R,(Z) used in determining aberration coeffi-
cients for finite object and image distances. The ray crosses the
z axis at the object position 2z, with slope o, and again at the
image position 2; with slope @;. For this particular ray o, = 0.025,
g = 115 and L = 5§33 um.

focal point) and obtain expressions for the FWHM spot
diameters.

All the aberrations of the lenz are treated with
esgentially the same method, in which a (small) deviation &
from the paraxial trajectory is calculated. The method
is described in several texts on electron optics.>" For
each aberration we arrive at a differential equation for the
deviation ¢ that is the same as the paraxial equation
[Eq. (12)] with an additional inhomogeneous term on the
right-hand side. This inhomogeneous differential equa-
tion iz solved by the method of variation of parame-
ters.!? The method involves choosing two linearly
independent solutions to Eq. (12), B,(Z) and R,(Z). If we
choose R,(Z) such that it equals zero at the image plane
(Z = Z.), the deviation in R, at the image plane caused by
an aberration ¢an be expressed in terms of the following
integral (see, e.g., Ref. 9):

_ Ry(Z)) J'z‘ ,
£ RiRy — R, R ZBRI(Z)W(RhRI ,ZWZ, (21)
where W(R,, Ry, Z) is the inhomogeneous term in the dif-
ferential equation. The quantity R, Ry’ — R.'R; is the
Wronskian of the two solutions R, and R., which is a con-
stant because of their linear independence,

In the general case, when the object and image planes
are both at finite distances from the lens, it is most useful
to define aberration coefficients, which are used for deter-
mining the trajectory error at the image plane for a trajec-
tory R, that originates on the axis at the object with a
slope a,. This trajectory, shown in Fig. 4, also crosses the
axis at the image plane, making an angle a; = a,/|M|,
where M is the linear magnification of the lens. Follow-
ing electron-optical conventions, we define spherical-,
chromatic-, spontaneous-emission-, and dipole-fluctuation-
aberration coefficients Cya’, Con’, Copons”, 80d Ca’, refer-
enced to the object plane, by the following relations:

|E-!Ph| = lMlaos(CaphD/L)a (22)
|£chr, = IMlaoE(Cchro/L) ¥ (23)

dJ. J. McClelland and M, R, Scheinfein

lespont| = |M[eto{Copont”/L), (24)
ledis] = | M, (Cai’/L), (25)

where ¢ is a fractional deviation in the energy of the atom
beam, to be discussed below. Absolute values of ¢ and M
are taken so that the aberration coefficients can be related
to spot diameters. The powers of o, used in these defini-
tions are chosen in order to remove any «, dependence
from the coefficients themselves. That the correct power
has been chosen for each aberration will become clear
below. Since the spontaneous and dipole aberrations are
diffusive in nature, the quantities eepon and g4, are inter-
preted as rms values.

To determine the aberration coefficients, we require an
explicit expression for the ray E,. For convenience we
characterize the trajectories in terms of the variable ¢ =
arctan Z + #/2 instead of in terms of Z and use solutions
of the form shown in Eq. (15). We write Ri{¢) = a,h{d),
where

sinfa(¢ ~ )]

hi¢) = g sin ¢ sin ¢,

(26)

For R, we choose an independent solution that has the
property Ra{d,) = 1, so that at the image plane R.{¢;} =
M. Although we do not need the explicit form of R;, we
note that it is

sin ¢, sinfq(¢ — )]
sin ¢ sinlg(p, ~ )

where a = ¢, — (1/g)tan™(g tan ¢,). The trajectories
h(¢) and g(¢) are the standard trajectories used for aber-
ration analysis in electron optics.'

With this choice of R; and R, the denominator in Eq. (21)
becomes —a,, and we can write

Ry(d) = g(¢) = (27)

i 4z
e=—-M| hi{p)W(ah, ah’, d)~—do. (28)
& d¢
Using Eqs. (22) and {(23), we can now write
. L % , do
Cost = 25 [, H& s, ak', 551 (29)
o | L [ hom L
Cone” = ‘aae J:“o h(d’)“’chr(aoh: ah @) gin? b (30)

The expressions for the diffusive-aberration coefficients
Copont® and Cy,® are similar to Egs. (29) and (30), though
a little more complicated because of the random nature
of the forces involved. They will be discussed in more
detail below. ‘

Determining the aberration coefficients is now reduced
to finding the inhomogeneocus terms for each aberration
gource and carrying out the integrations in Eqs. (29)
and (30).

1. Spherical Aberration

Spherical aberration arises when higher-order terms in
the expansion of the equation of motion are not neglected.
This is a manifestation of the fact that for large enough r
the potential is no longer simply quadraticin r. Since the
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potential is cylindrically symmetric, the next-higher term
is proportional to r*. The equation of motion depends on
allfor, so its next-higher term is of the order of r*. To
include ail terms in r* correctly, we must keep contribu-
tions from the expansion of the all-orders equation of mo-
tion [Eq. (2)] as well as contributions from the expansion
of the potential. The resulting third-order inhomoge-
necus term ig

2
1
’ = BIp3 — p_—
Wil B, R',Z) = B*R [(powoz k )(1 T

L1 | pepep| 22

7Rl 22)3] WRR [(1 + 22)3]
1

S| @

Converting Z to ¢ and R to a,h(}), we can insert Eq. (31)
into Kq. (29) to obtain an explicit integral for the spherical
aberration coefficient:

L ( I +4)
q* sin® ¢,

&
x [ sin® ¢ sin'la( ~ 41

0

2 2
B2, (4L _3)
q* sin* ¢,

Capho =

&L
x j sin'{q( — bo)ldd
bo
kL
g sin® ¢,
-}
x j sin® ¢ sinfq( — b,)]dp

4%°L
q° sin' ¢,

x | " sin 6 cos ¢ coslg(s ~ bo)]

o

x sinfg(¢ — d)a)]dqﬁ}« {33)

All the integrals in Eq. (33) can be done analytically, and
the resulting spherical-aberration coefficient, referenced
to the object plane, is given by

L smre[ P 5+ 2kt
Co” = Gin' 6, 8q° |2 [ Gt 9 -3 ]
L 1 12
- — 4%
sin® o, B@K® + 8) (3p i T 18 )
% [sin(2cf>o + —2675) - sin(2q.’:o)]. (34)

In going from Eq. (33) to Eq. (34), we have used the object—
image relation

$:i = ¢o + (n7fq), (35)
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obtained from finding the zeros of i{¢). In addition, we
have restricted ourselves to the case in which n = 1, so
Eq. (34) is valid only for the first image in a multiple-
crossover lens. The absolute value has been dropped be-
cause the sign of C,,,° can be shown to remain unchanged
for all excitations.®

The spherical-aberration coefficient given in Eq. (34)
can be used in this form for any situation in which the
object and image positions are finite. However, it is often
convenient to expand the coefficient as a polynomial in
1/M. This is useful if the main design consideration of a
lens is the magnification or if M is particularly large or
small. It can be shown™!! that C,.° can be uniquely rep-
resented by a fourth-order polynomial, i.e.,

Cs;phlo Caph2o Csphﬂ + CapM .
M M? M3 M

Clphn = Caphoo + (36)

The coefficients of the polynomial can be extracted from
Eq. (34) by means of the relationship

—cot ¢, = + cot(m/q), (37)

1
M sin(m/g)
which is derived from the expressions for the magnifica-
tion, Eq. (20), and the object-image relation, Eq. (35).
Substituting Eq. (37) into Eq. (34), we get the polynomial
coefficients

3mk®L L? 5+ 2%
Csphﬂo = Csph4. = Ll [ z(po ) - ]

8q°® sin*(m/g) | 2 3
L sin(2m/q) ( L? 2)
15 — 4
Bk Bsin'(mg) \ PV T 18 T 4R
(38)
Caphla = Csphso
3mwkiL cos(m/q) [ 12 5+ 2k3]
= 8 —
2q° sin¥{(m/q) wgg(pﬂ +8) 3
L{3 + cos(2m/q)] ( L 2)
~ = +15 ~ 4k
4(4k* + 8)sin’(m/q)
(39)
3wk2L[2 + cos(2'n'/q)][ L? 5+ 2k"‘]
0 = 8) -
Copnd 4q° sin¥(m/q) 2Wu2(p0 +8 3
3L cos{m/g) I? 2]
- 4 15 ~ 4k2].
ZaAR + e | Pt
(40)

The expression for C,,,° in terms of M is useful for most
imaging situations because the coefficients need be calcu-
lated only once and the spherical aberration is known for
all object-image distances. However, it poses a slight
problem whien we wish to consider the zero-magnification
(parallel-in) case because Cyn’ becomes infinite while a,
goes to zero. The spot size, of course, does not become
infinite. The way around this awkwardness is to use
the spherical-aberration coefficient C,u' that is defined
in terms of the trajectory angle «; at the image plane.
We write
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Cn h‘.
Igsphl = aismf“’ (41)
which then requires that
Caphi =M 4Cﬁpho| (42)

where we have used the fact that «; = o,/|M|. Using
Egs. (42) and (36), we find that -

Con'(M = 0) = Copps’. (43)

Equation (41) can now be used to obtain the spot size for
the zero-magnification case., To obtain the minimum
spot size, we note that the diameter can be taken at the
circle of least confusion, at which point the FWHM spot
size By, is given by Y2 L|en]. For a ray that is incident at
a radius ry, the angle at the image plane is given by

o

% = sin(m/a). (44)

&x; =

The final expression for the spot size arising from spheri-
cal aberration at the circle of least confusion then becomes

Sri'r  [[L* o B+ 2K
16L%¢" sin(m/a) 2w ©* " " T 3

3 2
ro® cos(m/q) ( L B 2)
BLAAR? + 3)\ Pip T 16— 4K ).

asph =

(46)

2. Chromatic Aberration

Chromatic aberration arises from a finite energy spread
in the incident atomic beam. Atoms with different initial
kinetic energies follow different trajectories through the
lens, resulting in a smearing of the focal spot.

The chromatic-aberration coefficient can be calculated
in a way analogous to the method for the spherical aberra-
tion. The energy E, in the paraxial equation (9) must be
replaced by Ey(1 + ¢), where ¢ is a fractional energy devia-
tion. When the equation is expanded and the lowest-order
terms retained, the following differential equation results:

2 ﬁAp() w02 hAPO WO2
+ = .
" T 2R, wiz) | ¢ 2E, wi(z) (46)
We see that the inhomogenecus term in this case is
kz
! =— 47
mhr(R,R ,Z) (1 + Zg)zeRs ( )

where the conversion to dimensionless variables has been
carried out. Substituting Eq. (47) into Eq. (30) and using
the object-image relation, Eq. (35), yields the chromatic-
aberration coefficient

wk*L

Cc rﬂ = a3 a2 4
h 2¢* sin? ¢,

(48)

Equation (48) is an exact expression for the chromatic-

aberration coefficient in the finite object—image case. As

with spherical aberration, it is useful to write it in terms

of a polynomial in the linear magnification M. In this

case it is necessary to include only powers up to M™%
Cc:hrl‘J C‘t:hr2ﬂ

Con’ = Cone® + ™ + e (49)
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The expansion coefficients are given by

wkiL 1

G’ = Comt” = =00 o)’

(50)
Cat® = “T -STI;E(‘?T—/(]). (61)

Converting to the image-plane chromatic-aberration coef-
ficient, defined by

|schr| = aie(cchri/L).- (52)
we obtain
Cchri = Mgcchro! (53)

from which we arrive at the FWHM spot diameter for the
zero-magnification case:

'JTkar{) AE 1/2
2q° sin(m/q) E,

schr =

(64)

where AE,; is the FWHM of the energy distribution of
the atomic beam.

3. Diffusive Aberrations

Since the spontaneous and dipole aberrations are the re-
sult of randem forces, the average deviation along a parti-
cle trajectory is zero. The deviations from the paraxial
trajectories must therefore be treated in terms of rms val-
ues. The formalism for this calculation resembles the
treatment of Brownian motion."”® We consider the radial
equation of motion, Eq. (1), with an additional inhomoge-
neous force term on the right-hand side:

s 20D Ly, (55)
m ar m

F.(t) is a random force for which {F.(¢)) = 0 but

(F)F.(t") ¢ 0. Converting Eq. (55) to a paraxial form,

we make the approximation z = vof, where vy = (2Ey/m)"?

is the initial atomic velocity, and write

1 aUir, 2) 1 ( z ) ‘
Y — = ——F | —]. 56
Tt B ar  2Ey\ue (56)
Converting to dimensionless variables, we can make the
association

L LZ
W(R, R, Z) = 2—%Fr(u—o)- RG]

This step allows us to write an expression for the mean-
gquare trajectory deviation that is similar to Eq. (21),
though it contains a double integral to account for the ran-
dom nature of W, To simplify the following expressions,
we suppress the explicit R and R dependence in W, writ-
ing only W(Z) and bearing in mind that some of the Z
dependence may come through an R or R’ dependence.
We get

N 2 N T A T :
€)= Riky - BEF J LY L., R

x (W(ZYW(Z)). (68)
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Putting, as before, the solution B; = &, k() into Eq. (58)
and changing variables from Z to ¢, we obtain expressions
for the spontaneous- and dipole-aberration coefficients:

c t°=£ J«fu dqb [ d¢’
T | dy, sin® ¢y, sin? ¢

h(@)h(d)

1/2 .
X (m;mnt(qb)mlmnt(d"))] 3y (59)
J‘M d¢, & dd)r

$o sin2 (f) do Sil’l2 {b’

L
Cap’ = ——3[ hd)h(4)

a,
1z
X (Waip(fﬁ)%ip(&))] - (60)

In order to use Egs. (59) and (60), we must now determine
the autocorrelations of the inhomogeneous terms Wipon
and ‘/Vdip.

The spontaneous-emission aberration arises as a result
of the random momentum changes of size 2/A, which oceur
each time a photon is spontaneously emitted. The aver-
age rate at which these changes occur depends on the in-
tensity of the lager, and for low intensities it equals vp/2,
where y is the natural linewidth of the atomic transition
in radians per second and p is the saturation parameter
given in Eq. (4).® Over the time scale of interest, i.e., the
time over which the focusing potential changes as the
atom passes through the lens, the momentum changes can
be congidered to occur over an infinitely short time and to
be completely uncorrelated. With this assumption we can
write

2

Frpos(®) P ') = %y”—(;—z)(%) St -t). (6D
The factor of 2/8 is a result of averaging over two of
the three spatial degrees of freedom in the spontaneous-
emission process. Assuming paraxial conditions, we can
write the saturation parameter p(r, ) in terms of ¢ as
L} R? L .
Wi+ 2 Po;;gﬂz(rﬁ)sm‘ ¢, (62)
Combining Egs. (57) and (61} and relation (62), we
can deduce

prz) = po

Lahzvo‘}'po 2 8 o
12w02E021\2R (¢') (Bln ¢)8(¢ d’) [
(63)

where we have used the fact that 8(Z — Z') = sin® ¢

5ad — ¢'). Inserting Eq. (63) for the autocorrelation of

the spontaneous-emission inhomogeneous term into the

expression for the aberration coefficient [Eq. (59)] and

substituting R(¢) = a,h({¢), we obtain

L2k LUO'YPOJ’M ) ]1.'2

0= || p 2 d)d . 64

Cupunt Aono[ 12 (¢) (SIn ¢) 4’ ( )
Putting in the definition of h(¢) [Eq. (26}], we get

Co 0w L*h (vapg)m 1
wont T awoE,\ 12 q? sin® ¢,

y [ [ einlate ¢,.)]]"“_ (66)

sin® ¢

(Wagont($)Wopone()) =

o

o
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The integral in Eq. (65) is not analytic, so a numerical
evaluation of this equation must be used to obtain the
aberration coefficient. In addition, a convenient expan-
sion into a polynomial in the magnification is not possible.
Nevertheless, the expression is still useful when one is
interested in the aberration coefficient for the finite-
magnification case,

Since the magnification expansion is not possible, and
hence we cannot easily convert to the aberration coeffi-
cient referenced to the image plane, another approach must
be taken to obtain the spot size for the zero-magnification
case. Instead of letting R, = a,k{¢) in Eq. (58), we can
use the parallel-in trajectory of Eq, {16}, since the choice of
solutions in the method of the variation of parameters is
arbitrary. We note that this trajectory crosses the axis at
the focus, so Eq. (58) is still valid. A linearly independent
golution is needed for R, for which we use

caslgd)

Ry = —sin(w/q) sin &

(66)
We note that R; = 1 at the focus (¢ = =fg). The Wron-
skian of i, and R; is now —(ry/L)sin{r/g), and we can write

8 _ Lz g d¢ g dqb' ’
€= ro® sin’(mr/g) L gin’ ¢ Jy sin? ¢ Ri()R(¢"

x (W(W($)). (67)

Putting Eqs. (63) and (18) into this expression leads to an
expression for the zero-magnification aberration coeffi-
cient referenced to the image plane (defined by ewpont =
|otilCopont'/L):

. L LShZ 1z
Capont'(M - 0) - ( Uo¥Po )

q? sin®(m/q) \ 12w’ Ey*A®
g gipnd 12

([ ), 9
o BIn* ¢

where we have used the fact that &; = ro/f = ry sin(n/g)/L.
The FWHM spot diameter follows immediately from this
result, i.e.,

ro ( LhPvyype )”2
¢ sin(wfg) \ 12w EE,"A
TG gt d 1/2
g ( J md¢) , (69)
o

sin® ¢

aspont = 2(2 In 2)U2

where the factor of 2(2 In 2)** provides the conversion
from the rms to the FWHM.

The dipole fluctuation aberration is treated in a man-
ner identical to the spontaneous-emission aberration. As
was discussed by Dalibard and Cohen-Tannoudji,' the
dipole force can reverse sign temporarily each time a pho-
ton is spontaneously emitted. The fluctuating part of the
dipole force that results from this random sign change
can be considered an inhomogeneous driving term F.(t)
in the equation of motion, for which {(F.(£)) = 0 but
(F()F.(") # 0, just as with spontaneous emission. For
small saturation parameters p << 1, the autocorrelation
of the fluctuating part of the dipole force can be writ-
ten as't

PA®
(Faglt) Faplt)) = “‘:,;""(Vp)ziv2 exp(—v|t — ). (70)
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Using the expression in relation (62) for the saturation
parameter in the TEMy,* laser atomic lens, letting
V — §/dr, and econverting ¢ to LZ/v, as before, we can write

L* RYZ) ( yL
4_ 2 A, L — — 4
Cwol (1 + 2% P\ T, 2 - z1).
(71)

(Wdip(z )Mip(zr» =

This expression leads to a complicated integral when con-
version is made to the variable ¢ for caleulating the aber-
ration coefficient. It suffices at present to consider the
limit yL/ve >> 1, which occurs when the number of spon-
taneous emissions is large during transit through the
lens. The approximation should be good because the
aberration itself is significant only when a large number
of spontaneous-emission events takes place. In this limit
we can say that

2Ug

exp(——%f-}z - Z’|) 6(Z AR (72)

We can now write an approximate autocorrelation in ¢ of
the inhomogeneous term in the differential equation:

*po ——-Re(tﬁ) (sin'® ¢)8(d — ¢).
(73)

(Wan($)Wap(d) = 2 ;’

This equation can be inserted into Eq. (60) to yield the
dipole-fluctuation-aberration coefficient:

Ot = 24 (20)"_ 2,
dip . muz 'YL qd sin" ¢0

<[

0

12
sin® ¢ sin(q(¢ - fbu)]ddi] . (74)

The integral in Eq. (74) is analytic but extremely cumber-
some. Therefore, as with the spontaneous aberration, we
do not perform the expansion in magnification but rather
leave the expression for the aberration coefficient as it is
for use in the finite-magnification case. For the zero-
magnification case, we proceed as we did with the sponta-
neous aberration, making use of the parallel-in trajectory
for Ry in Eq. (568). Using Eq. (67) with Eq. (73) gives a
zero-magnification aberration coefficient, referenced to
the image plane, of

200) 12 A%y
Y] ¢ sin¥(mfg)
1/2

e
X [J sin® q&(sin8 qu)dtb:l (76)
0

3
Ca(M = 0) = 2 (

and a FWHM spot diameter of

1/2 k2
- yelo fUo )™ RPa
dap = 4(In 2) (yL) 2% sin (mg)

12

wlq
X [J sin® ¢(sin® qu)dqb] . ('16)
0

B. Diffraction

The treatment of diffraction is straightforward once the
paraxial trajectories are known. Since the potential in
the lens is slowly varying as a function of z on the scale of
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the de Broglie wavelength Asp of the atom, we may apply
the WKB approximation and make a complete analogy
with the way diffraction is treated in ordinary geometric-
light optics. For a given initial intensity distribution in
the atomic beam the final spot size can be determined
from knowledge of the trajectories in exactly the same
manner as it would be for a light beam. For instance, a
diffraction-limited Gaussian atomic beam with a given
waist rading and location can be propagated through the
lens with the ray transfer (ABCD) matrix derived from
the principal plane locations and focal lengths. The spot
size and location can be inferred from the radius of curva-
ture and beam radius after the lens. Since the lens is
Newtonian in the immersion case as well as in the asymp-
totic cage, this approach is valid even when the focal spot
is inside the lens.

Alternatively, one can assume that the atomic beam has
a constant, circular intensity distribution formed by real
apertures. In this case ordinary Fraunhofer diffraction
is the appropriate optical analogy, and we obtain a simple
expression for the FWHM of the diffracted intensity dis-
tribution at the image plane:

0.61A4p .

o

Bgirre = (77}

For a beam that is initially parallel to the z axis with ra-
dius ro, a; is given by ry/f, where f is the focal length of the
lens. Thus the FWHM spot diameter at the focus is

0.61A4s L

Fo sm(qr/q) (78)

diftr ™

C. Finite Source Size

A perfectly parallel beam can be considered as arising
from an infinitesimal source at z = —o, Of course, any
real experiment hag a finite source, or object, of size d,
and a finite object—distance z,. This means that the focal
spot will contain an image of the source, reduced in size
by the magnification M = z;/z,. For very largez,,z; = f,
and we can write the FWHM contribution to the spot di-
ameter as

Bsouree = |M|d,s = (f/|2.)d., (79)

" where d, is the FWHM of the source.

D. Net Spot Size at the Focus

Rigorously speaking, it is not possible to predict the net
spot size from separate calculations of the individual con-
tributions. The aberrations in general interact with one
another and with the diffraction and source size effects.
Furthermore, in practice one generally wants the net spot
size to be at the empirically determined position of
smallest focus. This position can be located at the focal
plane, the circle of least confusion, or somewhere in be-
tween, depending on the relative sizes of the spot size
contributions. Nevertheless, an overall sense of the mag-
nitude of the net spot size can be obtained by combining
the various contributions in quadrature. In an analysis
of a scanning transmission electron-microscope column,
this approximation was demonstrated to give the FWHM
gpot diameter within 10% of the true FWHM as deter-
mined by a full wave-optical treatment.” The types
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Table 1. First-Order Properties of a TEM,,* Laser-Atomic Lens for Sodium®

Case vo (cm/s) Py (W) q f (um) zp {em) 27 (um) 27 (pm)?
A 1 x 10t 0.1 3.66 7.04 -11.64 —4,60 -39
B 5 x 10* 01 1.22 9.85 —-1.57 8.28 8.4
c 1 x 10° 0.1 1.06 30.1 ~0.46 29,7 299
D 1 x 104 1.0 6.33 11.20 ~21.1 -986 -7
E b x 10* 1.0 160 577 —-3.57 2.20 2.3
T 1 x 10° 1.0 1.18 11.59 —1.30 10.29 10.4

“wo = 1.0 um, L = 5.33 um, and po = 2. f is the focal length of the lens, z, is the position of the principal plane, and z; is the position of the focal point for

an initially paraliel atom beam,
“Ref, 6.

of aberration, their relative sizes, and the other spot
size contributions in the scanning transmission eltectron
microscope are similar to what is expected for a TEM;*
laser atomic lens, so we can assume that the approxi-
mation is appropriate in our case as well. Thus, as a
general but not a precise measure of the FWHM net spot
diameter, we write

‘Smt = (5:;|:rh2 + 6ehr2 + as_pnntz + 6dip:a + 6dlﬂ'r2 + asourcaz)lmv
{80)

The individual FWHM spot sizes are given by BEgs. (45),
(54), (69), (76), and (78) and relation (79), respectively.

4. EXAMPLES

Before discussing specific examples, it is perhaps useful
to consider the limitations imposed by keeping the lens
in the first-order, paraxial regime. As discussed in
Subsection 2.A, we require that (a) r* << w,?, (b) po = 6(1),
(e) U(r,z) =< Ey, and (d) »' << 1. Given the first two of
these requirements, {c) reduces to #A s E;. This is not
much of a limitation on A, since Eq /% is usually of the order
of 10-10" rad/s. By examining the slope of the trajec-
tory at the focus, where it reaches its largest value, it can
be shown that requirement (d) is satisfied as long as (a) is
true. Clearly the most limiting restriction is require-
ment (a). This is especially true when small spot sizes
are desired, since, as is seen below, the ultimate spot size
generally decreases as w, decreases. Nanometer-sized
spot diameters will require small values for w,, which
means the initial atom beam size ro will need to be even
smaller, '

We now discuss some numerical examples in order to
provide a general understanding of the operating ranges of
the TEM,,* laser atomic lens. In all examples we con-
sider the focusing of sodium atoms with a laser tuned
near the 3S8-3P(D;) transition. The wavelength of the
transition A = 0.69 um, the natural linewidth y = 6.28 X
107 rad/s, and the saturation intensity I, = 10 mW/em?
The mass m is 3.84 x 107® g, We calculate six cases and
also examine the minimum focal length (MFL) condition.
The six cases, originally selected by Gallatin and Gould®
(GG), are chosen with laser powers of 0.1 and 1.0 W for
gach of three atomic velocities, 1 X 10%, 5 x 10%, and
1 % 10° em/s. The laser beam waist w, is kept at 1.0 um,
making the Rayleigh length L = 5.33 um, and the detun-
ing is chosen in each case such that p, = 2.

A. First-Order Properties
Using Eq. (11) for ¢ and Eqgs. (18) and (19) for the principal
plane locations and focal lengths, it is a simple matter to

calculate the first-order lens properties. Table 1 shows
the results for the six cases discussed by GG, and Figs. 5(a)
and 5(b) show ray traces for each case. In cases A and D
we see that ¢ > 2, corresponding to a lens with multiple
crossovers. The trajectories shown in Fig. 5 illustrate
this case. The first principal planes are well removed
from the center of the lens, so the lens is quite thick.
Case C, on the other hand, is quite close to a thin lens,
since the focal length is long and the principal plane is
near the lens center. Case E hag the shortest focal length
of the six cases, and f is close to the minimum value of
6.33 nm. Interestingly, this is true even though ¢ is not
close to 2. Apparently there is a relatively wide range of
excitations for which the focal length is close to the mini-
mum but the principal plane is in different locations, as
can be seen from Fig. 3. This result has design implica-
tions in that the minimum focal spot diameter, attained
at the shortest focal length for a diffraction limited lens,
can bhe realized over a broad range of excitations.

The last column in Table 1 contains the focal spot loca-
tions obtained by GG for a Gaussian atomic beam with a
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Fig. 5. Ray traces of atomic trajectories through a TEMo* Iase‘r
atomic lens. () Casea A-C of Table 1, P, = 0.1 W, 1o is 1 x 10°,
5 x 104, and 1 x 10® cm/s, respectively. (b) Cases D-F
of Table 1, Py-= 1.0 W, vg is 1 X 10%, 5 x 10, and 1 x 10° cm/e,
respectively. (¢) MFL condition with g = 2,
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Table 2, Laser Power and Detuning Necessary
to Achieve MFL Conditions for Three
Atomic Velocities®

vy (em/s) PMFL (wny AMFL (rad/R)
1x10° © 0.006 1.92 x 10"
5 x 10* 368 4.81 x 10"
1 x 10° 58.8 1.92 x 10%

“Results are for godium atoms with we = 1.0 um and py = 2.

waist of radius 0.07 um located at z = ~3L. Excellent
agreement is seen in all but the thickest-lens cases, A and
D, where some deviation is apparent.

The MFL trajectory, the telescopic case, is shown in
Fig. 5(c). This situation occurs when ¢ = 2, which re-
sults in f = ~g, = L (633 pm for wy = 1.0 pm). Given
an initial atomic velocity and a fixed py of order 1 (say
po = 2), the laser power and detuning necessary to achieve
the MFL condition are uniquely determined. Using the
expression for g [Eq. (11)], we can derive

3E, N

A = =2 (81)
18 B A

P = i ke (82)

where in Eq. (82) we neglect y in the denominator of
Eq. (7). Table 2 shows the laser powers and detunings
required for a MFL lens, given the three initial velocities
of the examples above. We note that for moderately low
atomic velocities the power required is quite small but in-
creases dramatically as the velocity is raised. This effect
occurs because P,M™ depends on E¢% resulting in a vo'
dependence.

The strong vy dependence seen here should not be mis-
interpreted as causing a large chromatic aberration. It
arises because the detuning is increased together with the
velocity, requiring more laser power to keep py constant.
In a real situation A would be held fixed, in which case
the chromatic aberration would be as discussed in
Subsection 3.B.2.

B. Focal Spot Sizes

In this section we calculate the FWHM spot diameter con-
tributions arising from each of the sources discussed in
Section 3, using Eqs. (45), (54), (69), (76), and (78) and
relation (79). Results are obtained for the six cases dis-
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cussed above and also for the MFL condition. An initial
beam radius ry of 0.1 um is assumed. For the source size
aberration we assume a source of radius 0.1 pm at a dis-
tance of 1 cm, which gives a collimation half-angte of 1075,
For the chromatic aberration we assume AE;,/E, =
2 x 1072, in accord with Refs. 6 and 5. Table 3 shows the
results for each spot size contribution in nanometers in
each of the six cases as well as the quadrature sum 8.
Severa! interesting features are apparent from Table 3.
Generally, the largest contributions are diffraction, dipole
fluctuations, and spherical aberration. At low initial ve-
locity diffraction is by far the dominant effect, while at
high velocities the dipole fluctuations become larger.
Spherical aberration is larger at the higher velocities as
well, becoming comparable to diffraction in cages C and F.
Case E, in which the focal length is shortest, has the
smallest net spot size, ag expected. The chromatic aber-
ration is quite small in each case; however, this is some-
what arbitrary, since the spot size iz proportional to
AE./E,. The significance of this is that the restrictions
on the fractional energy spread in the atomic beam are not
80 severe as indicated in earlier reports."® One part in
10? could be tolerated in principle, as this brings the spot
size contribution te the same order of magnitude as the
other contributions.

To provide a comparison of the diffraction spot size
with the results of GG, we also consider the propagation of
a Gaussian atomic beam with a waist of radiug 0.07 um
located at z = ~3L. Our results for the 1/e® waist diame-
ters 2o are given in Table 4 along with thoge of GG. In-
terestingly, the spot sizes are in excellent agreement for
cases B, C, E, and E  Cases A and D do not show such
good agreement, This could be explained perhaps by not-

Table 4. Comparison with GG Values of 1/¢? Spot
Diameters 2¢, for a Gaussian Atomic Beam®
b

Case 20p 20y
A 11.0 7.0
B 3.09 3.0
C 4.72 49
D 17.3 6.3
E 1.81 1.7
F 1.82 1.8

“Diameters are given in nanometers at the focus for the six cases of
Table 1; all other spot size contributions are ignored. A waist radius of
o = (.07 um located at z = —3L = —15.99 pm i assumed.

Ref. 6.

Table 8. FWHM Spot Diameters (nm) Arising from Each of the Contributions for the Six Cases of

Table 1°

Case Adp (nm) ssph Behrom 6spont sdip B sirre Baource Bt
A 0.172 0.06 0.106 0.087 0.0156 7.40 0.14 7.40
B 0.0345 1.11 0.157 0.070 2,32 2.07 0.20 3.32
C 0.0172 1.75 0.184 0.105 5.04 3.17 0.60 6.24
D 0.172 0.02 0.102 0.160 0.001 11.8 0.22 11.8
E 0.0345 0.50 0.129 0.024 0.93 1.21 0.12 1.62
F 0.0172 1.24 0.163 0.032 3.67 1.22 0.23 4.07

“Spherical aberration, 8,u; chromatic aberration, 8.,; spontanecus-emission aberration, Suon; dipole-fluctuation aberration,

By, diffraction, dqy; source

gize, Saurce. 'The fractional energy apread in the atomic beam AE12/Bp = 2 X 1072, The source radius is 0.1 pm, located at 2, = ~1 cm. 8y i8 the quadra-

ture sum of all contributions.
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Table 5. FWHM Spot Diameters (nm) at the MFL Condition for Sodium Atoms at
Three Atomic Velocities®

Vo (cm/s) 6rsph Behrom 6uponl. 6dip Saierr Bsource Beot
1 x 10* 0.27 0.118 0.172 0.18 5.61 0.11 5.63
5 x 10* 0.27 0.118 0.016 0.40 1.12 0.11 1.23
1 x 10° 0.27 0.118 0.005 0.57 0.56 0.11 0.86

."Laser power and detuni_ng are given in Table 2; w, = 1.0 pm, py = 2. Spherical aberration, §,,,; chromatic aberration, &4.; spontaneous-emission aberra-
tion, Sapent; dlpv?le-!?]uctuatmn aberration, 8q;;; diffraction, 84} source size, Syue.. The fractional energy spread in the atom beam AE;/Eo = 2 x 107°,
The source radius is 0.1 um, located at 2o = —1 cm. 8y, is the quadrature sum of all contributions.

ing that the principal plane is located extremely far out of
the lens in these two cases. Thus the waist position
2z = —3L = ~15.99 um cannot really be considered to be
in a field-free region in these cases, as was assumed
by GG,

Spot sizes for the MFL lens are shown in Table 5 for
three initial atomic velocities. The laser power and de-
tuning are those given in Table 2. At 1 X 10* cm/s the
lens is essentially diffraction limited, At the higher veloci-
ties the dipole-fluctuation aberration grows as the contri-
bution from diffraction decreases, so that at a velocity of
1 x 10° em/s the contributions are approximately equal.
The spherical aberration, chromatic aberration, and
source size contributions are the same for each velocity
because they depend only on parameters held fixed in the
MFL lens.

5. LENS OPTIMIZATION

One of the most useful applications of the explicit expres-
sions for the various spot sizes obtained in this paper is
lens optimization, By examining how each of the aberra-
tions, diffraction, and the source size contribution depend
on the laser- and atomic-beam parameters, it is possible to
determine what combinations of parameters give the
smallest spot size.

Presuming that a particular atom is chosen, so that the
mass m, the wavelength A, the resonant angular frequency
wy, and the linewidth y are fixed, there are seven free
parameters to be optimized. The laser beam has three
parameters available for optimization, i.e., the power P,
the detuning A, and the waist size wy. Instead of working
directly with P, and A, however, it is more convenient to
work with the lens excitation parameter g and the spa-
tially independent saturation parameter p,. Though these
parameters may seem to be interdependent, examination
of the definitions shows that, given the freedom to choose
any Py and A, any values for ¢ and p, can be obtained.

The atomic beam has four parameters that can in prin-
ciple be selected for minimum spot size: the source size
d,, the beam radius at the lens ry, the mean velocity v,
and the energy spread AE;.

Of the seven parameters available for optimization,
three can be identified as not having specific values that
minimize any of the spot size contributions. The
parameter p, has no effect on chromatic aberration, dif-
fraction, or the source size effect, and its effect on the
spherical, spontaneous, and dipole aberrations is to reduce
them monotonically as it decreases. The source size d,
affects only the source size contribution, which is directly
proportional to it. The energy width AE,, is similar in

that it has only a linear effect on the chromatic aberration.
To obtain the smallest possible spot size, the only option is
to make these three parameters as small as practically
possible or small encugh so that the contribution to the
total spot size is negligible.

The remaining four parameters, g, wq, ro, and vg, affect
the spot size contributions in different ways, causing some
to increase and others to decrease and having no effect on
others. Thus it is reasonable to ask which values of these
parameters give the smallest spot size.

First, let us examine the behavior of the net spot size as
a function of the lens excitation ¢. All the aberrations,
with the exception of the chromatic, can be made arbitrar-
ily small with sufficiently large ¢. The chromatic aberra-
tion decreases initially but becomes constant for large
enough q. The diffraction and source size contributions
to the spot size, however, are smallest at the MFL condi-
tion ¢ = 2. Since diffraction and the source size are
major contributions to §.. at the smallest spot sizes, it
seems reasonable to choose ¢ = 2 as an optimum value.
Additionally, this gives the lens symmetry properties; i.e.,
the focal spot is at the center of the lens, which could be
important for practical reasons.

Let us now let ¢ = 2 and ask how the total spot size at
the MFL can be minimized with respect to wy, ro, and v,
The source size contribution is not affected by any of
these three parametets, 80 we can ignore it for the present
discussion, With ¢ = 2 the remaining FWHM spot di-
ameters can be written as

Bup = T;;(po + 8)";-%5» 83)

Bepe = %Ag;—mr{; , (84)

Say = 0617 A= 2O, ®7)
mA robg

where the spherical-aberration spot size is approximated
by only the first term in Eq. (45). This is a good approxi-
mation, because L is generally larger than w,. With
relation (83) and Eqgs. (84)-(87), we can write the square of
the total spot size as
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8 . 4, 3 8 4
Bl = A-S 4 Br? + 0T | plol | p Wo
tot we' o ve® D wo® + Erozvo"' 8)
with
9r 2
A= [1024(110 + 3)] ) (89)
31?' AE[,IE 2
B=|ZZalul
[16 E, ] (90)
7% 1ln 2 ypy A®
Ce—t o m 1)
819In2 A ,
= 65536 ,ypo ) (92)
o B
E = 0372 .
Gy {93)

Optimizing the lens for minimum spot size now consists
of minimizing Eq. (88) with respect to the three free
parameters wy, g, and vy. This calculation is best done
numerically, especially since in any real situation there
will be constraints imposed on these parameters. For
three simple exfmples we consider a base case with
55‘,“"", = (.11 nm, pe = 2, AE”g/E(} =2 X 10_3, Wo =
1.0 pm, ry = 0.1 pm, and ve = 5 X 10* cm/s (i.e.,
the second case in Table 5). We let each of the three
parameters vary in turn while keeping the other parame-
ters fixed. When w, is free, a minimum spot of 1.11 nm is
obtained at wq = 0.867 um. Allowing ry to vary gives a
minimum of 1.21 nm at ro = 0.107 um. Varying v, gives
a minimum spot diameter of 0.835 nm with vy = 1.25 x
10° em/s. These values show that the arbitrarily chosen
examnples in Section 4 are fairly close to optimal.

6. CONCLUSION

We have shown that a TEM,,* laser atomic lens can act as
a focusing optical element for an atomic beam with high
resolution. By using particle-optics techniques, we have
derived simple expressions for the first-order properties of
the lens and also for all the major aberrations that con-
tribute to the spot size of a focused atomic beam. Dif-
fraction and source size contributions to the spot size
have been determined as well, and various examples have
been discussed. With the expressions derived in this
paper optimization of the lens is shown to be possible.
Our main purpose in this paper has been to provide a
detailed description of the TEM,* laser atomic lens so

J. J. McClelland and M. R. Scheinfein

that any future experimental work on such a lens will
have a solid basis to build on. If attained experimentally,
the focal spot sizes of ~1 nm discussed in this paper will
open a wealth of new possibilities for nanostructure re-
search, microscopy, and precision measurements. Al-
though achieving some of the laser- and atomic-beam
parameters required for these spot sizes may push the
limits of present technology, it is likely that in the near
future these parameters will be realizable,
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